Hilbert's $14^{\text {th }}$ Problem

Question: Let k be a field, $k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a polynomial ring in n variables over k and L a subfield of $k\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ containing k. Is $L \cap k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a finitely generated k-algebra?

Hilbert's $14^{\text {th }}$ Problem

Question: Let k be a field, $k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a polynomial ring in n variables over k and L a subfield of $k\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ containing k. Is $L \cap k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a finitely generated k-algebra? YES, if tr. deg.k $L \leq 2$ (Zariski, 1954)

Hilbert's $14^{\text {th }}$ Problem

Question: Let k be a field, $k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a polynomial ring in n variables over k and L a subfield of $k\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ containing k. Is $L \cap k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a finitely generated k-algebra? YES, if tr. deg.k $L \leq 2$ (Zariski, 1954)
NO, if tr. deg. ${ }^{k} L \geq 3$ (Kuroda, 2005)

Hilbert's $14^{\text {th }}$ Problem

Question: Let k be a field, $k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a polynomial ring in n variables over k and L a subfield of $k\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ containing k. Is $L \cap k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a finitely generated k-algebra?
YES, if tr. deg.k $L \leq 2$ (Zariski, 1954)
NO, if tr. deg. ${ }^{k} L \geq 3$ (Kuroda, 2005)
Question: Let G be a linear algebraic group acting on an affine algebraic variety X. Is the ring of invariants $k[X]^{G}=\{f \in k[X] \mid f(g . x)=f(x) \forall g \in G, x \in X\}$ a finitely generated k algebra?

Hilbert's $14^{\text {th }}$ Problem

Question: Let k be a field, $k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a polynomial ring in n variables over k and L a subfield of $k\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ containing k. Is $L \cap k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a finitely generated k-algebra?
YES, if tr. deg.k $L \leq 2$ (Zariski, 1954)
NO, if tr. deg. ${ }^{k} L \geq 3$ (Kuroda, 2005)
Question: Let G be a linear algebraic group acting on an affine algebraic variety X. Is the ring of invariants
$k[X]^{G}=\{f \in k[X] \mid f(g . x)=f(x) \forall g \in G, x \in X\}$ a finitely
generated k algebra?
Yes, if G is reductive (Hilbert's Finiteness Theorem).

Hilbert's $14^{\text {th }}$ Problem

Question: Let k be a field, $k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a polynomial ring in n variables over k and L a subfield of $k\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ containing k. Is $L \cap k\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ a finitely generated k-algebra?
YES, if tr. deg.k $L \leq 2$ (Zariski, 1954)
NO, if tr. deg.k $L \geq 3$ (Kuroda, 2005)
Question: Let G be a linear algebraic group acting on an affine algebraic variety X. Is the ring of invariants
$k[X]^{G}=\{f \in k[X] \mid f(g . x)=f(x) \forall g \in G, x \in X\}$ a finitely
generated k algebra?
Yes, if G is reductive (Hilbert's Finiteness Theorem).
NO, $G=G_{a}^{13}, X=\mathbb{A}^{32}$ (Nagata, 1960)

\mathbb{G}_{a} action on Affine space \mathbb{A}_{k}^{n}

Let k be a field of characteristic 0 .
\mathbb{G}_{a} action on Affine space $\mathbb{A}_{k}^{n} \longleftrightarrow D \in L N D\left(k^{[n]}\right)$
Ring of invariants $=\operatorname{ker}(D)=\left\{f \in k^{[n]} \mid D(f)=0\right\}$.
Question: Given a $D \in \operatorname{LND}\left(k^{[n]}\right)$, is $\operatorname{ker}(D)$ a finitely generated k-algebra?

\mathbb{G}_{a} action on Affine space \mathbb{A}_{k}^{n}

Let k be a field of characteristic 0 .
\mathbb{G}_{a} action on Affine space $\mathbb{A}_{k}^{n} \longleftrightarrow D \in L N D\left(k^{[n]}\right)$
Ring of invariants $=\operatorname{ker}(D)=\left\{f \in k^{[n]} \mid D(f)=0\right\}$.
Question: Given a $D \in \operatorname{LND}\left(k^{[n]}\right)$, is $\operatorname{ker}(D)$ a finitely generated k-algebra?
Yes, if

1. D is linear (Maurer-Weitzenböck's Theorem), (Weitzenböck, 1932; Sheshadri, 1962)

\mathbb{G}_{a} action on Affine space \mathbb{A}_{k}^{n}

Let k be a field of characteristic 0 .
\mathbb{G}_{a} action on Affine space $\mathbb{A}_{k}^{n} \longleftrightarrow D \in L N D\left(k^{[n]}\right)$
Ring of invariants $=\operatorname{ker}(D)=\left\{f \in k^{[n]} \mid D(f)=0\right\}$.
Question: Given a $D \in \operatorname{LND}\left(k^{[n]}\right)$, is $\operatorname{ker}(D)$ a finitely generated k-algebra?
Yes, if

1. D is linear (Maurer-Weitzenböck's Theorem), (Weitzenböck, 1932; Sheshadri, 1962)
2. $n=2,3$ (Rentschler 1968, Miyanishi, 1985)

\mathbb{G}_{a} action on Affine space \mathbb{A}_{k}^{n}

Let k be a field of characteristic 0 .
\mathbb{G}_{a} action on Affine space $\mathbb{A}_{k}^{n} \longleftrightarrow D \in L N D\left(k^{[n]}\right)$
Ring of invariants $=\operatorname{ker}(D)=\left\{f \in k^{[n]} \mid D(f)=0\right\}$.
Question: Given a $D \in \operatorname{LND}\left(k^{[n]}\right)$, is $\operatorname{ker}(D)$ a finitely generated k-algebra?
Yes, if

1. D is linear (Maurer-Weitzenböck's Theorem), (Weitzenböck, 1932; Sheshadri, 1962)
2. $n=2,3$ (Rentschler 1968, Miyanishi, 1985)
3. $n=4$ and D is monomial LND (Kuroda, 2003)

\mathbb{G}_{a} action on Affine space \mathbb{A}_{k}^{n}

Let k be a field of characteristic 0 .
\mathbb{G}_{a} action on Affine space $\mathbb{A}_{k}^{n} \longleftrightarrow D \in L N D\left(k^{[n]}\right)$
Ring of invariants $=\operatorname{ker}(D)=\left\{f \in k^{[n]} \mid D(f)=0\right\}$.
Question: Given a $D \in \operatorname{LND}\left(k^{[n]}\right)$, is $\operatorname{ker}(D)$ a finitely generated k-algebra?
Yes, if

1. D is linear (Maurer-Weitzenböck's Theorem), (Weitzenböck, 1932; Sheshadri, 1962)
2. $n=2,3$ (Rentschler 1968, Miyanishi, 1985)
3. $n=4$ and D is monomial LND (Kuroda, 2003)
4. $n=4$ and D is triangular (Daigle and Freudenburg, 2001)
5. $n=4$ and $\operatorname{rank}(D) \leq 3$ (Bhatwadekar and Daigle, 2009)

\mathbb{G}_{a} action on Affine space \mathbb{A}_{k}^{n}

Let k be a field of characteristic 0 .
\mathbb{G}_{a} action on Affine space $\mathbb{A}_{k}^{n} \longleftrightarrow D \in L N D\left(k^{[n]}\right)$
Ring of invariants $=\operatorname{ker}(D)=\left\{f \in k^{[n]} \mid D(f)=0\right\}$.
Question: Given a $D \in \operatorname{LND}\left(k^{[n]}\right)$, is $\operatorname{ker}(D)$ a finitely generated k-algebra?
Yes, if

1. D is linear (Maurer-Weitzenböck's Theorem), (Weitzenböck, 1932; Sheshadri, 1962)
2. $n=2,3$ (Rentschler 1968, Miyanishi, 1985)
3. $n=4$ and D is monomial LND (Kuroda, 2003)
4. $n=4$ and D is triangular (Daigle and Freudenburg, 2001)
5. $n=4$ and $\operatorname{rank}(D) \leq 3$ (Bhatwadekar and Daigle, 2009)
6. $D(s)=1$ for some $s \in k^{[n]}$ (Slice theorem)

continued...

No,

1. For $n=7$ (Robert, 1990)

$$
D=X^{t+1} \frac{\partial}{\partial S}+Y^{t+1} \frac{\partial}{\partial T}+Z^{t+1} \frac{\partial}{\partial U}+(X Y Z)^{t} \frac{\partial}{\partial V}, \text { for } t \geq 2 .
$$

continued...

No,

1. For $n=7$ (Robert, 1990)

$$
D=X^{t+1} \frac{\partial}{\partial S}+Y^{t+1} \frac{\partial}{\partial T}+Z^{t+1} \frac{\partial}{\partial U}+(X Y Z)^{t} \frac{\partial}{\partial V}, \text { for } t \geq 2
$$

2. $\mathrm{n}=6$ (Freudenburg, 2000)

$$
D=X^{3} \frac{\partial}{\partial S}+Y^{3} S \frac{\partial}{\partial T}+Y^{3} T \frac{\partial}{\partial U}+(X Y)^{2} \frac{\partial}{\partial V}
$$

continued...

No,

1. For $n=7$ (Robert, 1990)

$$
D=X^{t+1} \frac{\partial}{\partial S}+Y^{t+1} \frac{\partial}{\partial T}+Z^{t+1} \frac{\partial}{\partial U}+(X Y Z)^{t} \frac{\partial}{\partial V}, \text { for } t \geq 2
$$

2. $\mathrm{n}=6$ (Freudenburg, 2000)

$$
D=X^{3} \frac{\partial}{\partial S}+Y^{3} S \frac{\partial}{\partial T}+Y^{3} T \frac{\partial}{\partial U}+(X Y)^{2} \frac{\partial}{\partial V}
$$

continued...

No,

1. For $n=7$ (Robert, 1990)

$$
D=X^{t+1} \frac{\partial}{\partial S}+Y^{t+1} \frac{\partial}{\partial T}+Z^{t+1} \frac{\partial}{\partial U}+(X Y Z)^{t} \frac{\partial}{\partial V}, \text { for } t \geq 2
$$

2. $\mathrm{n}=6$ (Freudenburg, 2000)

$$
D=X^{3} \frac{\partial}{\partial S}+Y^{3} S \frac{\partial}{\partial T}+Y^{3} T \frac{\partial}{\partial U}+(X Y)^{2} \frac{\partial}{\partial V}
$$

3. $\mathrm{n}=5$, (Daigle and Freudenburg, 1999)

$$
D=X^{3} \frac{\partial}{\partial S}+S \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}+X^{2} \frac{\partial}{\partial V}
$$

continued...

No,

1. For $n=7$ (Robert, 1990)

$$
D=X^{t+1} \frac{\partial}{\partial S}+Y^{t+1} \frac{\partial}{\partial T}+Z^{t+1} \frac{\partial}{\partial U}+(X Y Z)^{t} \frac{\partial}{\partial V}, \text { for } t \geq 2
$$

2. $\mathrm{n}=6$ (Freudenburg, 2000)

$$
D=X^{3} \frac{\partial}{\partial S}+Y^{3} S \frac{\partial}{\partial T}+Y^{3} T \frac{\partial}{\partial U}+(X Y)^{2} \frac{\partial}{\partial V}
$$

3. $\mathrm{n}=5$, (Daigle and Freudenburg, 1999)

$$
D=X^{3} \frac{\partial}{\partial S}+S \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}+X^{2} \frac{\partial}{\partial V}
$$

Note: D is $k[X, S-X V]$-derivation of $k[X, S-X V][V, T, U]$.
It can be re-written as

$$
D=X^{2} \frac{\partial}{\partial V}+((S-X V)+X V) \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}
$$

continued...

No,

1. For $n=7$ (Robert, 1990)

$$
D=X^{t+1} \frac{\partial}{\partial S}+Y^{t+1} \frac{\partial}{\partial T}+Z^{t+1} \frac{\partial}{\partial U}+(X Y Z)^{t} \frac{\partial}{\partial V}, \text { for } t \geq 2
$$

2. $\mathrm{n}=6$ (Freudenburg, 2000)

$$
D=X^{3} \frac{\partial}{\partial S}+Y^{3} S \frac{\partial}{\partial T}+Y^{3} T \frac{\partial}{\partial U}+(X Y)^{2} \frac{\partial}{\partial V}
$$

3. $\mathrm{n}=5$, (Daigle and Freudenburg, 1999)

$$
D=X^{3} \frac{\partial}{\partial S}+S \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}+X^{2} \frac{\partial}{\partial V}
$$

Note: D is $k[X, S-X V]$-derivation of $k[X, S-X V][V, T, U]$.
It can be re-written as

$$
D=X^{2} \frac{\partial}{\partial V}+((S-X V)+X V) \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}
$$

Daigle-Freudenburg example is a triangular monomial derivation of $k^{[5]}$ and also a triangular derivation of $R^{[3]}$, for $R=k^{[2]}$.

How to find Kernel of a LND

Let $B=k\left[X_{1}, X_{2}, \cdots, X_{n}\right], D \in \operatorname{LND}(B), A=\operatorname{ker}(D)$ and $r \in B$ be a local slice of D (i.e., $\left.f=D(r) \neq 0, D^{2}(r)=0\right)$.
Dixmier Map: $\pi_{r}(g)=\sum_{i \geq 0} \frac{(-1)^{i}}{i!} \frac{r^{i}}{f^{i}} D^{i}(g)$.
Then $\pi: B \rightarrow A_{f}$ is a surjective ring homomorphism.

How to find Kernel of a LND

Let $B=k\left[X_{1}, X_{2}, \cdots, X_{n}\right], D \in \operatorname{LND}(B), A=\operatorname{ker}(D)$ and $r \in B$ be a local slice of D (i.e., $\left.f=D(r) \neq 0, D^{2}(r)=0\right)$.
Dixmier Map: $\pi_{r}(g)=\sum_{i \geq 0} \frac{(-1)^{i}}{i!} \frac{r^{i}}{f^{i}} D^{i}(g)$.
Then $\pi: B \rightarrow A_{f}$ is a surjective ring homomorphism.

1. Van-den-Essen's Algorithm

Let $A_{0}=k\left[f^{m_{1}} \pi\left(X_{1}\right), f^{m_{2}} \pi\left(X_{2}\right), \cdots f^{m_{n}} \pi\left(X_{n}\right), f\right]$.
Construct A_{i} Inductively as follows
$A_{i}=\left\{h \in B \mid f h \in A_{n-1}\right\}$
$A=A_{n}$ iff $A_{n}=A_{n+1}$

How to find Kernel of a LND

Let $B=k\left[X_{1}, X_{2}, \cdots, X_{n}\right], D \in \operatorname{LND}(B), A=\operatorname{ker}(D)$ and $r \in B$ be a local slice of D (i.e., $\left.f=D(r) \neq 0, D^{2}(r)=0\right)$.
Dixmier Map: $\pi_{r}(g)=\sum_{i \geq 0} \frac{(-1)^{i}}{i!} \frac{r^{i}}{f^{i}} D^{i}(g)$.
Then $\pi: B \rightarrow A_{f}$ is a surjective ring homomorphism.

1. Van-den-Essen's Algorithm

Let $A_{0}=k\left[f^{m_{1}} \pi\left(X_{1}\right), f^{m_{2}} \pi\left(X_{2}\right), \cdots f^{m_{n}} \pi\left(X_{n}\right), f\right]$.
Construct A_{i} Inductively as follows
$A_{i}=\left\{h \in B \mid f h \in A_{n-1}\right\}$
$A=A_{n}$ iff $A_{n}=A_{n+1}$

Some Positive Results

Theorem (-, Singha)

Let R be a UFD and D a triangular monomial derivation of $B=R[X, Y, Z]$ defined by

$$
D(X)=f, D(Y)=g X^{a} \text { and } D(Z)=h X^{b} Y^{c}
$$

where $f, g, h \in R, f, g, h$ are pairwise co-prime and a, b, c are non-negative integers. Then $\operatorname{ker}(D)$ is generated by at most 3 elements over R.

Some Positive Results

Theorem (-, Singha)

Let R be a UFD and D a triangular monomial derivation of $B=R[X, Y, Z]$ defined by

$$
D(X)=f, D(Y)=g X^{a} \text { and } D(Z)=h X^{b} Y^{c}
$$

where $f, g, h \in R, f, g, h$ are pairwise co-prime and a, b, c are non-negative integers. Then $\operatorname{ker}(D)$ is generated by at most 3 elements over R.
$\operatorname{ker}(D)=R[F, G, H]$, where $F=-g X^{(a+1)}+(a+1) f Y$,
$G=h \sum_{i=0}^{c}(-1)^{i+1} \alpha_{i} f^{i} g^{(c-i)} X^{b+(a+1) c+1-i(a+1)} Y^{i}+$
$(-1)^{c+2} \alpha_{c}(b+1) f^{(c+1)} Z$,
$H=\frac{1}{f^{\gamma}}\left(h^{t_{3}} F^{t_{1}}+(-1)^{t_{1}+t_{3}+1} g^{t_{1}-c t_{3}} G^{t_{3}}\right)$,
where $\alpha_{0}=1, \alpha_{i}=\frac{\prod_{j=0}^{i}(b+(a+1) c+1-(j-1)(a+1))}{i!}$ for $i=1, \ldots, c$,
$t_{1}=\frac{b+(a+1) c+1}{d}, t_{3}=\frac{a+1}{d}$ and $d=\operatorname{gcd}(a+1, b+(a+1) c+1)$.

Theorem (-, Singha)
Let R be a UFD containing $\mathbb{Q}, B=R[X, Y, Z]$ and D_{0} an irreducible triangular derivation of $B_{0}=R[X, Y]$ such that

$$
D_{0}(X)=\alpha \in R, D_{0}(Y)=f(X) \in R[X] .
$$

Then $\operatorname{ker}\left(D_{0}\right)=R[F]$. Extend the derivation D_{0} to $B=B_{0}[Z]$ by defining $D(Z)=F^{m}$. Then $\operatorname{ker}(D)$ is generated by at most 3 elements over R.

Theorem (-, Singha)
Let R be a UFD containing $\mathbb{Q}, B=R[X, Y, Z]$ and D_{0} an irreducible triangular derivation of $B_{0}=R[X, Y]$ such that

$$
D_{0}(X)=\alpha \in R, D_{0}(Y)=f(X) \in R[X] .
$$

Then $\operatorname{ker}\left(D_{0}\right)=R[F]$. Extend the derivation D_{0} to $B=B_{0}[Z]$ by defining $D(Z)=F^{m}$. Then $\operatorname{ker}(D)$ is generated by at most 3 elements over R.
Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$.
Then $F=\alpha Y+\sum_{i=1}^{n+1} b_{i} X^{i}$, where $b_{1}=-a_{0}$ and
$b_{k}=\left\{-1+\sum_{i=1}^{k-1} \frac{(-1)^{i+1}}{(i+1)!} \prod_{j=1}^{i}(n-j+1)\right\} a_{k-1}$, for $k=2, \cdots, n+1$.

$$
\begin{aligned}
& G=-\alpha Z+X F^{m}, \\
& H=\frac{1}{\alpha}\left(F^{m(m(n+1)+1)}-\sum_{i=m}^{m(n+1)} c_{i} F^{m(m(n+1)-i)} G^{i}\right),
\end{aligned}
$$

where c_{i} is the coefficient of X^{i} in g^{m} for $i=m, \cdots, m(n+1)$. $\operatorname{ker}(D)=R[F, G, H]$.

Theorem
Let R be a UFD containing \mathbb{Q} and D_{0} a derivation of $B_{0}=R[X, Y]$ defined by

$$
D_{0}(X)=f, D_{0}(Y)=g
$$

where $f, g \in R$. Choose $h \in \operatorname{ker}\left(D_{0}\right)$. Extend the derivation D_{0} to $B=B_{0}[Z]$ by defining $D(Z)=h$. Then $\operatorname{ker}(D)$ is generated by at most 3 elements over R.
$\operatorname{ker}(D)=R[g X-f Y,-h X+f Z, h Y-g Z]$

Theorem
Let R be a UFD containing \mathbb{Q} and D a nice derivation of $B=R[X, Y, Z]$ such that

$$
D(X)=f, D(Y)=g, D(Z)=h
$$

where $f \in R$ and f, g, h are pairwise co-prime. Then $\operatorname{ker}(D)$ is generated by at most 3 elements over R.
$\operatorname{ker}(D)=R[g X-f Y,-h X+f Z, h Y-g Z]$.

Theorem (Joseph Khoury, 2001)
If $R=k[U, V]=k^{[2]}$ and a_{1}, \cdots, a_{m} for $m \geq 1$ are monomials in U, V (not all zero), then the kernel of the elementary derivation $D=\sum_{i=1}^{m} a_{i} \frac{\partial}{\partial Y_{i}}$ of $B=R\left[Y_{1}, \cdots, Y_{m}\right]$ is a polynomial ring in $m-1$ variables over R. Moreover, the $m-1$ generators can be chosen to be of the form $b_{i} Y_{i}-b_{j} Y_{j}$, where $b_{i}, b_{j} \in R$ for $1 \leq i<j \leq m$.

Theorem (-, Singha)

Let $R=k[U, V]$ and D be the derivation of $R[X, Y, Z]$ defined by $D(X)=f(U, V), D(Y)=g(U, V)$ and $D(Z)=\sum_{i+j=n} H_{(i, j)} X^{i} Y^{j}$, where $H_{(i, j)} \in k[U, V]$ and $\operatorname{gcd}(f, g)=1$. Then $\operatorname{ker}(D)$ is generated by at most 3 elements over R.
$\operatorname{ker}(D)=R\left[f_{3}, f_{4}, f_{5}\right]$, where
$f_{3}=-g X+f Y$;
$\mathrm{f}_{4}=f^{n+1}\left(Z-H_{(n, 0)} \frac{1}{n+1} \frac{1}{f}-H_{(n-1,1)}\left\{\frac{1}{n} \frac{1}{f} X^{n} Y-\frac{1}{n(n+1)} \frac{1}{f^{2}} g X^{n+1}\right\}\right.$
$\left.+\sum_{j \geq 2 ; i+j=n} \sum_{k=1}^{j}(-1)^{k+1} \frac{\prod_{l=1}^{k}(j-l+1)}{\prod_{l=0}^{k}(i+l+1)} \frac{1}{f^{k+1}} g^{k} X^{i+k+1} Y^{j-k}\right)$;
$f_{5}=\frac{1}{f}\left(g f_{4}-(-1)^{n+1} \frac{H_{(0, n)}}{n+1} f_{3}^{n+1}\right)$.

Generalization of Daigle-Freudenburg Counterexample

$$
D=X^{3} \frac{\partial}{\partial S}+S \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}+X^{2} \frac{\partial}{\partial V}
$$

Generalization of Daigle-Freudenburg Counterexample

$$
D=X^{3} \frac{\partial}{\partial S}+S \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}+X^{2} \frac{\partial}{\partial V}
$$

Theorem
Let k be a field of characteristic zero and $B=k\left[Y_{1}, \ldots, Y_{I}, X, S, T, U, V\right]$, where $I \geq 0$. Let

$$
D=f_{1} g(X)^{m} \partial_{S}+f_{2} S \partial_{T}+f_{3} T \partial_{U}+f_{4} g(X)^{r} \partial_{V}
$$

where $g(X) \in k[X] \backslash k, m, r \in \mathbb{N}, \frac{2 m}{3} \leq r \leq m-1$, and $f_{i}(\neq 0) \in k\left[Y_{1}, \ldots, Y_{l}\right]$. For $m \geq 3$, ker D is not a finitely generated k-algebra.

Generalization of Daigle-Freudenburg Counterexample

$$
D=X^{3} \frac{\partial}{\partial S}+S \frac{\partial}{\partial T}+T \frac{\partial}{\partial U}+X^{2} \frac{\partial}{\partial V}
$$

Theorem
Let k be a field of characteristic zero and $B=k\left[Y_{1}, \ldots, Y_{I}, X, S, T, U, V\right]$, where $I \geq 0$. Let

$$
D=f_{1} g(X)^{m} \partial_{S}+f_{2} S \partial_{T}+f_{3} T \partial_{U}+f_{4} g(X)^{r} \partial_{V}
$$

where $g(X) \in k[X] \backslash k, m, r \in \mathbb{N}, \frac{2 m}{3} \leq r \leq m-1$, and $f_{i}(\neq 0) \in k\left[Y_{1}, \ldots, Y_{l}\right]$. For $m \geq 3$, ker D is not a finitely generated k-algebra.

Theorem
Let $B:=k\left[U, Y_{1}, Y_{2}, \cdots, Y_{m+1}, V\right]$ for $m \geq 3$,
$D_{0}:=U^{t} \frac{\partial}{\partial Y_{1}}+Y_{1} \frac{\partial}{\partial Y_{2}}+\cdots+Y_{m} \frac{\partial}{\partial Y_{m+1}}$ for $t \geq 2$ and
$D:=D_{0}+U^{r} \partial_{V}$. If $\frac{t}{2} \leq r \leq t-1$, then $\operatorname{ker}(D)$ is not a finitely generated k-algebra.

